APPENDIX B

PROCESS COMPONENT SPREADSHEETS

B-1:	ELECTRIC POWER GENERATION - COAL, NATURAL GAS & FUEL OIL
B-2:	LUMP IRON ORE
B-3:	PELLETIZING BINDER - BENTONITE
B-4:	COAL
B-5:	BURNT LIME/DOLOMITE
B-6:	OXYGEN GAS
B-7:	CARBON ELECTRODE
B-8:	CO-PRODUCT COKE
B-9:	NON-RECOVERY COKE PROCESS WITH CO-GENERATION

B-10: RAW MATERIAL ASSUMPTIONS

APPENDIX B-1

ELECTRIC POWER GENERATION - COAL, NATURAL GAS & FUEL OIL

D.O.E. IRONMAKING STUDY -OVERALL SUMMARY MASS BALANCES ELECTRIC POWER GENERATION - COAL, NATURAL GAS AND FUEL OIL

S BALANCES AND FUEL OIL		BTU/ID	 ,	18,900 NOMINAL HEAT CONTENT OF FUEL OIL (API GRAV. 19)			_	3,550.40 KWn//mt NET CONTENT - FUEL OIL (ASSUMPTION)	1.071 (bs/kWhr COAL(3) 0.486 kg/kWhr COAL	0.50 lbs/kWhr N.G.(3) 0.228 kg/kWhr N.G.		30.00% AMOUNT OF WASTE ROCK MINED				BTU = 0.0002930 kWhrs	BTU = 1.000 kWhrs		4.263 NOMINAL HEAT CONTENT OF COAL - KWhrs Gross/lb					29.89% NEI EFFICIENCY FOR POWER GENERATION - FUEL OIL	REFERENCES:			3) EPRI Databook, 1995	4) Inventory of U.S. Greenhouse Gas Emmissions & Sinks: 1990-1997	5) DOE/EIA-0623, Challenges of Electric Power Industry	Restructuring for Fuel Suppliers, September 1998	PERCENTAGES OF FLECTRIC POWER (IISA) BY:	57 00% COA!				16.00% OTHER (RENEWABLE, HYDRO, WASTES, ETC.)*	NON-EMISSION GENERALING
D.O.E. IRONMAKING STUDY -OVERALL SUMMARY MASS BALANCES ELECTRIC POWER GENERATION - COAL, NATURAL GAS AND FUEL OIL	MM kWhr/YEAR ELECTRICAL POWER GENERATED (TARGET)	MM kWhr/YEAR GR. ELEC. POWER (CALC. COAL)		_	BTI	MM kWhr/YEAR NET ELEC. POWER (CALC. F.O.) 6,598.6	4.000,0	8,5/1.4 OAL RESOURCE	ROCK 485.71 mt/MM kWhr	EP. PLANT 228.29 mt/MM kWhr	O SHIPPING 273.94 mt/MM kWhr	- mt/kWhr POWER		U% (UNINIM	(hrs/mt ROCK)	1.000	3,412.79		TOTAL SHOVEL FUEL CONSUMPTION (kg/hr)	TOTAL LOADER FUEL CONSUMPTION (kg/hr)	TOTAL HAUL TRUCK FUEL CONSUMPTION (kg/hr/)	L ROCK (kg/hr)	(OCK) - SHOVEL (1)	(OCK) - LOADERS (2) (OCK) - TRUCKS (4)	(kg/mt ROCK)	SHOVEL HORSEPOWER (CAT 13.75 CU YD)	LOADER HORSEPOWER (CAT 992D, 14 CU YD)	HAUL TRUCK HORSEPOWER (CAT 785B, 130 TON)	TRUCK % CARBON	COAL MINE ELECTRICAL POWER REQ'D (kWhr/mt ROCK)	PREP PLANT ELECTRICAL POWER REQ'D (KWhr/mt COAL)	FUEL REQUIREMENT RAW COAL TRANS, TRUCK 30 Mt - (kg/mt) DAW COAT TRANSDORT DISTANCE ONE WAY, (km)	FILE PEOLIPEMENT COAL TRANS - (kg/mt)	COAL TRANSPORT DISTANCE ONE WAY - (km)	ELEC. POWER REQUIRED FOR N.G. TRANS (kWhr/mt)	ELEC. POWER REQUIRED FOR F.O. PIPELINE TRANS (kWhr/mt)		
DOEELEC2 D.O.E. IRON 07-June-2000 ELECTRIC PO Rev. 2	000000	1.002621 MM kWhr/YEAR GR. EL		1.000000 MM kWhr/YEAR NET EL		1.000000 MIM kWhr/YEAR NET EL		SUMMARY: 732.31 MT/YEAR AS-MINED COAL RESOURCE	219.69 MT/YEAR MINE WASTE ROCK	S12.62 MT/YEAR COAL TO PREP. PLANT	2	0.000912 NET CO2 EMISSIONS- mt/kWhr POWER	A SOUTHWENT ON C. TO A	ASSOMETIONS: (Ref. 1) 85.00% DIESEL ELLE! (COAL MINING) %C			0.000012 HAUL TRUCK WASTE (hrs/mt ROCK)	0.000029 HAUL TRUCK ORE (hrs/mt ROCK)	102.865 TOTAL SHOVEL FUEL					0.0027 101AL FUEL (kg/mt ROCK) - LOADERS (2) 0.00201 TOTAL FUEL (kg/mt ROCK) - TRUCKS (4)		755 SHOVEL HORSEPOWI			_			0.101 FUEL KEGUIKEMENI		_				

D.O.E. IRONIMAKING STUDY -OVERALL SUMMARY MASS BALANCES ELECTRIC POWER GENERATION - COAL, NATURAL GAS AND FUEL OIL

DOEELEC2

ELECTRIC POWER STREAM LABLE	ELECTRIC POWER GENERATION - C STREAM LABLE DRY 8	ON - COAL, NA	TURAL GAS	OAL, NATURAL GAS AND FUEL OIL	• [Fe UNITS	2% 2	C UNITS	CO2
COAL:		(mt/YR)	(mt/YR)	(mt/YR)	(DRY)	(mt/YR)	(DRY)	(mt/YR)	(mt/YR)
AS-MINED COAL/ROCK		732.31	21.97	754.28			80.00%	585.850	
WASTE ROCK		219.69	6.59	226.28			80.00%	175.755	
RAW COAL TO PREP PLANT		512.62	15.38	528.00			80.00%	410.095	
DIESEL FUEL (MINING ETC.)			0.01				85.00%	0.010	
EXHAUST GASES	447								0.038
MINE ELECTRICAL POWER REQ'D	(KVV	(KVVIII) 91) 521.90							
AS-MINED RAW TRANS. TO PREP PLANT			0.05				85.00%	0.045	
EXHAUST GASES							·		0.164
NET PREPPED COAL TO USE		486.99	14.61	501.60			80.00%	389.590	
REJECT TAILINGS TO DISPOSAL	7744	25.63	77.0	26.40			80.00%	20.505	
PREP. P ELECTRICAL POWER REQ'D 2,099	(KVVIII	2,099.26							
NET PREPPED COAL TO USE		486.99	14.61	501.60	- the		80.00%	389.590	
DIESEL FUEL - COAL TRANSPORT			2.43				85.00%	2.070	
EXHAUST GASES - COAL TRANS. COAL: EQUIV. ELEC. POWER PRODUCED 1,002,621.	(KWh 1,002	(kWhr/yr) 1,002,621.16	······································				· ,		7.589
GROSS: TOTAL ELECTRICAL POWER REQ'D COAL REQUIRED mt	(kW	(kWhr/yr) 2,621.16 5.40					80.00%	4.317	15.830
NET: (KWhrfyr) NET ELEC. POWER FOR COAL: 1,000,000.	(kWh 1,000	(kWhr/yr) 1,000,000.00						—— \l	mt CO2/kWhr 0.001448
TOTAL MT COAL/1.0 MM KWhr NET TOTAL CO2 FOR 1.000 MM KWHR		485.71			Wantiff of a second		····	388.571 395.013	1,448.382

D.O.E. IRONMAKING STUDY -OVERALL SUMMARY MASS BALANCES

ELECTRIC POWER GENERATION - COAL, NATURAL GAS AND FUEL OIL		
ELECTRIC POWER GENERATION - COAL, NATURAL GAS AND FUEL)	등
ELECTRIC POWER GENERATION - COAL, NATURAL GAS AND I	ì	-UEL
ELECTRIC POWER GENERATION - COAL, NATURAL GAS	ì	ND I
ELECTRIC POWER GENERATION - COAL, NATURAL		3AS
ELECTRIC POWER GENERATION - COAL, NATUI		RAL (
ELECTRIC POWER GENERATION - COAL, N		! ATΩ
ELECTRIC POWER GENERATION - CO		AL, N
ELECTRIC POWER GENERATION	į	S :
ELECTRIC POWER GENERA		TION
ELECTRIC POWER GE		NER/
ELECTRIC POWE		R GE
ELECTRIC P		OWE
ELECT	i	RIC P
面		ECT
		Ξ

	CO2 (mt/YR)					604.050		0.000604					870.932		mt COZ/kWhr 0.000871					
	C UNITS		164.366	0.375	164.741	164.741		, ! <u> </u>		235.591	1.936	237.527	237.527	••.			,-			
	%C (DRY)		72.00%	72.00%						%00.98	86.00%									
	Fe UNITS (mt/YR)																			
ES OIL	%Fe (DRY)																- 11	,		
ERALL SUMMARY MASS BALANCES COAL, NATURAL GAS AND FUEL OIL																mt CO2/kWhr	-		_	0.000912
UMMARY MA ATURAL GAS													•		•	mt CO2/kWhr 0.001448	0.000604	0.000871	0.000000	
'-OVERALL S ON - COAL, N	GAS (mt/YR)	2,282.86	228.29	0.52	228.81	(kWhr/vr)	1,002,282.86	1,000,000.00	(kWhr/yr) 8,218.29	273.94	2.25	276.19	V. 1940.	(KWnr/yr) 1,008,218.29	1,000,000.00	27.00%	10.00%	3.00%	30.00%	-
D.O.E. IRONMAKING STUDY -OVERALL SUMMARY MASS BALANCES ELECTRIC POWER GENERATION - COAL, NATURAL GAS AND FUEL OIL	STREAM LABLE	NATURAL GAS: ELEC. POWER FOR N.G. TRANS.	AMOUNT OF N.G. REQ'D (W/O TRANS)	EQUIV. NAT. GAS FOR TRANS.	NET N.G. REQUIRED (W TRANS.)	POWER PLANT FLUE GAS	GROSS POWER GENERATED:	NET POWER GENERATED: FUEL OIL:	ELEC. POWER FOR F.O. TRANS.	AMOUNT OF F.O. REQ'D (W/O TRANS)	EQUIV. FUEL OIL FOR TRANS.	NET F.O. REQUIRED (W TRANS.)	POWER PLANT FLUE GAS	GROSS POWER GENERATED:	NET POWER GENERATED:	COAL	NATURAL GAS	FUEL OIL	OTHER NON-CO2 EMISSION	WEIGHTED U.S.A.:
DOEELEC2 07-June-2000	STREAM NUMBER		·													<u></u>			,	

APPENDIX B-2

LUMP IRON ORE

D.O.E. IRONMAKING STUDY -OVERALL SUMMARY MASS BALANCES OVERALL SUMMARY MASS BALANCES - LUMP IRON ORE

DOEORE

7		
BASIS:		
1.000	MM MT/YEAR LUMP ORE DELIVERED	
SUMMARY:		
3.163 1.913 1.250 1.000 0.250	MM MT/YEAR AS-MINED ROCK MM MT/YEAR WASTE ROCK MM MT/YEAR ORE ROCK TO PREP PLANT 60.47% MM MT/YEAR CRUSHED LUMP ORE MM MT/YEAR FINE ORE REJECTS	PERCENT MINE WASTE ROCK PERCENT FINE ORE REJECTED - WT.% FEED
ASSUMPTIONS: (Ref. 1)	. (Ref. 1)	REFERENCES: 1) SME Mining Engineering Handbook. 2nd Edition. 1992
85.00%	DIESEL FUEL (ORE MINING) %C	2) BASE PROCESS BLOCK DIAGRAM: Figure A-4
0.006350	SHOVEL OPERATION (hrs/mt ORE)	3) BASE PROCESS (DRI/EAF) MASS BALANCE S.S. (APPENDIX C-1)
0.012701	LOADER OPERATION (hrs/mt ORE)	
0.015360	HAUL TRUCK WASTE (hrs/mt ORE)	
0.010041		
128.581		
235.022	TOTAL LOADER FUEL CONSUMPTION (kg/hr/)	
1242 383	TOTAL FIRE FOR ALL ROCK (kg/hr)	
0.817	TOTAL FUEL (kg/mt ORE) - SHOVEL (1)	
2.985	TOTAL FUEL (kg/mt ORE) - LOADERS (2)	
22.322	TOTAL FUEL (kg/mt ORE) - TRUCKS (4)	
26.124	TOTAL FUEL (kg/mt ORE)	
755	SHOVEL HORSEPOWER (CAT 13.75 CU YD)	
069	LOADER HORSEPOWER (CAT 992D, 14 CU YD)	
1290	HAUL TRUCK HORSEPOWER (CAT 785B, 130 TON)	
85.00%	DIESEL FUEL % CARBON	
6.53	IRON ORE MINE ELECTRICAL POWER REQ'D (KWhr/mt ROCK)	
9.26	PREP PLANT ELECTRICAL POWER REQ'D (KWhr/mt ORE)	
0.028	PIPELINE ELECTRICAL POWER REQ'D (KWhr/mt ORE/km)	
3000	ASSUMED LUMP ORE SHIPPING DISTANCE (km)	
0.00449	FUEL REQUIREMENT - SHIPPING (kg/mt/km)	
13.46	FUEL REQUIREMENT SHIPPING (kg/mt LUMP ORE)	

D.O.E. IRONMAKING STUDY -OVERALL SUMMARY MASS BALANCES OVERALL SUMMARY MASS BALANCES - LUMP IRON ORE

DOEORE 06-June-2000

STREAM NUMBER	STREAM LABLE	DRY SOLIDS (MM T/YR)	LIQUID (MM T/YR)	TOTAL (MM T/YR)	%Fe (DRY)	Fe UNITS	%C (DRY)	C UNITS	CO2
1001	AS-MINED ROCK (3)	3.163	0.095	3.258	35.00%	1.107	%00.0	0 000	
1002	WASTE ROCK (3)	1.913	0.057	1.970	14.94%	0.294	0.00%	0.000	
7	IRON ORE TO PREP PLANT	1.250	0.038	2.564	65.00%	0.813	%00.0	0.000	
	DIESEL FUEL REQ'D		0.0327		,		85.00%	0.028	
	EXHAUST GASES			<u>-</u>					0.1018
	MINE ELECTRICAL POWER REQ'D	(MM KWhr/yr) 20.666						11-11-11	
	CRUSHED LUMP ORE TO SHIPPING	1.000	0.030	1.030	65.00%	0.650	0.00%	0.000	··-
	FINE ORE TO DISPOSAL	0.250	0.008	0.258	65.00%	0.163	0.00%	0.000	·
	PREP. ELECTRICAL POWER REQ'D	(MM kWhr/yr) 11.573	•						
	SHIPPING FUEL REQ'D		0.0135				85.00%	0.011	
	EXHAUST GASES, SHIPPING								0.0419
	PROCESS ELECTRIC POWER REQ'D	(MM kWhr/yr) 32.24							
i	TOTAL CO2 PRODUCED		1. — — — — — — — — — — — — — — — — — — —	 	-//			0.0392	0.1437

APPENDIX B-3 PELLETIZING BINDER - BENTONITE

D.O.E. IRONMAKING STUDY - OVERALL SUMMARY MASS BALANCES PELLETIZING BINDER BALANCES

000

07-June-2000 Rev. 2 BASIS:

DOEBIND

1.000 MM MT/YEAR PELLETIZING BINDER (BENTONITE)

SUMMARY:

2.1053 MM MT/YEAR AS-MINED BENTONITE RESOURCE
1.0527 MM MT/YEAR MINE WASTE ROCK
1.0527 MM MT/YEAR BENTONITE ROCK TO PREP. PLANT
1.0000 MM MT/YEAR NET BENTONITE TO SHIPPING

ASSUMPTIONS: (1)

FOTAL HAUL TRUCK FUEL CONSUMPTION (kg/hr) TOTAL LOADER FUEL CONSUMPTION (kg/hr) FOTAL SHOVEL FUEL CONSUMPTION (kg/hr) SHOVEL HORSEPOWER (CAT 13.75 CU YD) TOTAL FUEL (kg/mt ROCK) - LOADERS (2) TOTAL FUEL (kg/mt ROCK) - SHOVEL (1) fOTAL FUEL (kg/mt ROCK) - TRUCKS (4) HAUL TRUCK WASTE (hrs/mt ROCK) SHOVEL OPERATION (hrs/mt ROCK) -OADER OPERATION (hrs/mt ROCK) TOTAL FUEL FOR ALL ROCK (kg/hr) **FOTAL FUEL MINING (kg/mt ROCK)** DIESEL FUEL (ROCK MINING) %C HAUL TRUCK ORE (hrs/mt ROCK) 85.00% 102,865 0.183 0.668 4.996 5.846 0.007106 0.007106 188.018 703.024 993.907 0.003553 0.007106

REFERENCES:
1) SME Mining Engineering Handbook, 2nd Edition, 1992
2) COMPONENT BLOCK DIAGRAM: FIGURE A-3

5.00% PERCENT OF LOSSES IN PREP. PLANT(1)

50.00% PERCENT WASTE ROCK(1)

FUEL REQUIREMENT BENTONITE TRANS. TRUCK 30 mt - (kg/mt) FUEL REQUIREMENT RAW ROCK TRANS. TRUCK 30 mt - (kg/mt) BENTONITE MINE ELECTRICAL POWER REQ'D (KWhr/mt ROCK) PREP PLANT ELECTRICAL POWER REQ'D (KWh#/mt ORE) RAW ROCK TRANSPORT DISTANCE, ONE WAY - (km) BENTONITE TRANSPORT DISTANCE, ONE WAY - (km) HAUL TRUCK HORSEPOWER (CAT 785B, 130 TON) LOADER HORSEPOWER (CAT 992D, 14 CU YD) DIESEL FUEL % CARBON 690 1290 85.00% 2.50 14.18 0.101 10.092

DOEBIND 07-June-2000

D.O.E. IRONMAKING STUDY - OVERALL SUMMARY MASS BALANCES
PELLETIZING BINDER BALANCES

	PELLE ILING BINDER BALANCES	SINDER BAL	ANCES						
STREAM	STREAM LABLE	DRY SOLIDS (MM T/YR)	LIQUID (MM T/YR)	TOTAL	%Fe	Fe UNITS	2% (XaC)	C UNITS	CO2
		,	,	\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	(1)(2)	(\)	(142)	(MIMI IN IN)	(INTERNAL LETTE)
	AS-MINED CLAY/ROCK	2.105	0.063	2.168			0.00%	0.000	
	WASTE ROCK	1.053	0.032	1.084			0.00%	0.000	
	BENTONITE ROCK TO PREP PLANT	1.053	0.032	1.084			%00.0	0.000	
	DIESEL FUEL (MINING ETC.)		0.0062			-	85.00%	0.005	
	EXHAUST GASES								0.0192
	MINE ELECTRICAL POWER REQ'D	(MM KWhryr) 5.262						- 4-	
	AS-MINED ROCK TRANS, TO PREP PLANT		0.0005				85.00%	0.00045	
	EXHAUST GASES							****	0.0017
	NET PREPPED BENTONITE TO PELLET PLA	1.000	0.030	1.030			0.00%	0.000	-
	REJECT TAILINGS TO DISPOSAL	0.053	0.002	0.054			0.00%	0.000	
	PREP. P ELECTRICAL POWER REQ'D	(IVIIVI KVVDITY) 14.928	·						
	NET PREPPED BENTONITE TO PELLET PLA	1.000	0.030	1.030		• • • • • • • • • • • • • • • • • • • •	%00:0	0.000	
	DIESEL FUEL - BENTONITE TRANS.		0.0050				85.00%	0.00425	
	EXHAUST GASES - BENTONITE TRANS.							•	0.0156
	TOTAL ELECTRICAL POWER	(MM kWhr/yr) 20.19							
	TOTAL CO2 PRODUCED							0.0099	0.0364

APPENDIX B-4 COAL

1.000 MM MT/YR COAL DELIVERED	1.5038 MM MT/YEAR AS-MINED COAL RESOURCE 0.4511 MM MT/YEAR MINE WASTE ROCK 1.0527 MM MT/YEAR COAL TO PREP. PLANT 1.0000 MM MT/YEAR NET COAL TO SHIPPING	ASSUMPTIONS: (Ref. 1)	85.00% DIESEL FUEL (COAL MINING) %C		0.005969 HAUL IKUCK WASTE (RFS/MT KUCK)	.01382/ HAUL I RUCK UKE (IIIS/IIII RUCK) 102.865 TOTAL SHOVEL FUEL CONSUMPTION (ka/hr)		•		,	11.459 IOLAE FUEL MINING (Rg/mt ROCK)	733 SHOVEL HORSEPOWER (CAT 13.73 CO 15) 690 (CADER HORSEPOWER (CAT 992) 14 CH VD)		-	1.62 PREP PLANT ELECTRICAL POWER REQ'D (kWhr/mt COAL)	0.101 FUEL REQUIREMENT RAW COAL TRANS.	5 RAW COAL TRANSPORT DISTANCE, ONE WAY - (km)	6.728 FUEL REQUIREMENT COAL TRANS (kg/mt)	500 COAL TRANSPORT DISTANCE, ONE WAY
	10	30.00% AMOUN		REFERI	MNS (L		g/hr)	JN (kg/hr)		2	á	(C)	130 TON)	(kWhr/mt ROCK)	D (kWhr/mt COAL)	. TRUCK 30 mt - (kg/mt)	: WAY - (km)	fmt)	′ - (km)
		30.00% AMOUNT OF WASTE ROCK MINED (1)		REFERENCES:	1) SME Mining Engineering Handbook, Znd Edition, 1992	MITONEN I BLOCK DIAGRAM: FIGURE A-4													

D.O.E. IRONMAKING STUDY - OVERALL SUMMARY MASS BALANCES COAL ONLY - DELIVERED TO USE

DOECOAL 08-June-2000

DOECOAL 08-June-2000

D.O.E. IRONMAKING STUDY - OVERALL SUMMARY MASS BALANCES
COAL ONLY - DELIVERED TO USE

	מלטט לעטט	- 1	DEEN ENCE 10 OOE						
STREAM	STREAM LABLE	DRY SOLIDS	LIQUID	TOTAL	%Fe	Fe UNITS	2% 0	C UNITS	CO2
NOMBEK		(MINI I/YK)	(IMIMI I/YR)	(IVIIVI I/YK)	(DRT)	(IMIM I/YK)	(DRT)	(WIIWI I/Y R)	(IVIM L/TK)
	AS-MINED COAL/ROCK	1.504	0.045	1.549			%00:0	0.000	
	WASTE ROCK	0.451	0.014	0.465			%00:0	0.000	
	RAW COAL TO PREP PLANT	1.053	0.032	1.084			%00.0	0.000	
	DIESEL FUEL (MINING ETC.)		0.0121				85.00%	0.010	
	EXHAUST GASES	/BAN A LANGE CAN							0.0376
	MINE ELECTRICAL POWER REQ'D	0.430							
	AS-MINED RAW TRANS. TO PREP PLANT		0.0000				85.00%	0.00004	
	EXHAUST GASES								0.0001
	NET PREPPED COAL TO USE	1.000	0.030	1.030			0.00%	0.000	•••
	REJECT TAILINGS TO DISPOSAL	0.053	0.002	0.054	-		%00.0	0.000	
	PREP. P ELECTRICAL POWER REQ'D	1.708							
	NET PREPPED COAL TO USE	1.000	0:030	1.030			0.00%	0.000	
	DIESEL FUEL - COAL TRANS.		0.0050				85.00%	0.00425	
	EXHAUST GASES - COAL TRANS.								0.0156
	TOTAL ELEC. POWER FOR COAL:	(MM kWhr/yr) 2.1379							·
	TOTAL CO2 FOR 1.000 MM mt/YR							0.0145	0.0533

APPENDIX B-5 BURNT LIME/DOLOMITE

D.O.E. IRONMAKING STUDY - OVERALL SUMMARY MASS BALANCES BURNT LIME/DOLOMITE BALANCES

DOELIME 08-June-2000

		36.00% PERCENT CARBONATE IN LIME ROCK 33.33% PERCENT WASTE ROCK 5.00% PERCENT OF LOSSES IN PREP. PLANT 43.20% PERCENT CO2 IN CLEANED LIME ROCK	REFERENCES: 1) SMF Mining Engineering Handbook, 2nd Edition, 1992	2) COMPONENT BLOCK DIAGRAM: FIGURE A-5																							
MM MT/YEAR BURNT LIME/DOLOMITE		MM MT/YEAR AS-MINED LIMESTONE/MGO ROCK MM MT/YEAR MINE WASTE ROCK MM MT/YEAR LIME ROCK TO PREP. PLANT MM MT/YEAR NET LIMESTONE TO CALCINATION MMM MT/YEAR TARGET CALCINED LIME	: (Ref. 1)	DIESEL FUEL (ROCK MINING) %C	SHOVEL OPERATION (hrs/mt ROCK)	LOADER OPERATION (hrs/mt ROCK) HAIII TRIICK WASTE (hrs/mt BOCK)	HAUL TRUCK ORE (hrs/mt ROCK)	TOTAL SHOVEL FUEL CONSUMPTION (kg/hr)	TOTAL LOADER FUEL CONSUMPTION (kg/hr)	TOTAL FIRE FOR ALL BOOK (Malky)	TOTAL FUEL (kg/mt LIME ROCK) - SHOVEL (1)	TOTAL FUEL (kg/mt LIME ROCK) - LOADERS (2)	TOTAL FUEL (kg/mt LIME ROCK) - TRUCKS (4)	TOTAL FUEL (kg/mt LIME ROCK)	٠,	_		DIESEL FUEL % CARBON	LIMESTONE MINE ELECTRICAL POWER REQ'D (KWhr/mt ROCK)	PREP PLANT ELECTRICAL POWER REQ'D (KWhr/mt ORE)	FUEL REQUIREMENT LS TRANS. TRUCK 30 mt - (kg/mt)		FUEL REQUIREMENT LIME TRANS. TRUCK 30 mt - (kg/mt)	LIME TRANSPORT DISTANCE, ONE WAY - (km)	FILE REQUIREMENT - CALCINING (GJ/mt CALCINE)	CHEL DECLIDEMENT CALCINING (SA N G /m+ CALCINE)	
1.000	SUMMARY:	2.780 0.927 1.853 1.761 1.000	ASSUMPTIONS: (Ref. 1)	85.00%	0.002691	0.005381	0.007175	128.581	235.022	0/0./00	1242,363	0.843	6.305	7.379	755	069	1290	82.00%	3.35	19.03	0.126	5	6.308	250	π 27	27.76	24.05

DOELIME 08-June-2000

D.O.E. IRONMAKING STUDY - OVERALL SUMMARY MASS BALANCES
BURNT LIME/DOLOMITE BALANCES

	- 1	BURNI LIME/DULUMITE BALANCES	IIE BALANC	ΈV					
STREAM NUMBER	STREAM LABLE	DRY SOLIDS (MM T/YR)	LIQUID (MM T/YR)	TOTAL (MM T/YR)	%Fe (DRY)	Fe UNITS (MM T/YR)	%C (DRY)	CUNITS (MM T/YR)	CO2 (MM T/YR)
	AS-MINED LIME ROCK	2.780	0.083	2.863			9.82%	0.273	
	WASTE ROCK	0.927	0.028	0.954			5.89%	0.055	
	LIME ROCK TO PREP PLANT	1.853	0.056	1.909	- · · · -		11.78%	0.218	
	DIESEL FUEL (MINING ETC.)		0.0137	***			85.00%	0.012	
	EXHAUST GASES	(20 And 14 A A A							0.0426
	MINE ELECTRICAL POWER REQ'D	(IVIIVI KVVIII/YI) 9.323	·						
	NET PREPPED LIME ROCK TO CALC.	1.761	0.053	1.813			11.78%	0.207	
	REJECT TAILINGS TO DISPOSAL	0.093	0.003	0.095			11.78%	0.011	
	PREP. P ELECTRICAL POWER REQ'D	(MIM KVIII) 35.274	-						
	NET PREPPED LIME ROCK TO CALC.	1.761	0.053	1.813			11.78%	0.207	
	DIESEL FUEL - LIME ROCK TRANS.		0.0002				82.00%	0.00019	
	EXHAUST GASES - LIME ROCK TRANS.					•	** <u>-</u>		0.0007
	BURNT LIME/DOLOMITE	1.000	0.000	1.000			0.00%	0.000	
	FUEL (DRYING, CALCINATION, ETC.)		0.2184				72.00%	0.157	
	CALCINATION FLUE GASES	Andra (Andrews	, , ,		·				1.3372
	CALC, ELECTRICAL POWER REQ'D	46.587		-					
	NET LIME/MgO SHIPPED	1.000	0.000	1.000					
	LIME TRANSPORT FUEL		0.0063				85.00%	0.005	
	EXHAUST GASES FOR LIME TRANS.								0.0197
	TOTAL ELECTRICAL POWER	(MM kWhr/yr) 91.19							
	TOTAL CO2 PRODUCED							0.3819	1.4002

D.O.E. IRONMAKING - BURNT LIME/DOLOMITE, Rev. 2

Page2

APPENDIX B-6

OXYGEN GAS

D.O.E. IRONMAKING STUDY - OVERALL SUMMARY MASS BALANCES

BULK (CRYOGENIC) OXYGEN GAS PRODUCTION

Rev. 2

08-June-2000

DOEOXY

BASIS:

1.000 MM Nm3/YEAR OXYGEN GAS (99%)

SUMMARY:

ASSUMPTIONS:

MM Nm3 AIR INLET 1.00947 4.807

MM Nm3 OXYGEN LOSSES MM Nm3 OXYGEN INLET

0.020 0.990 1.000

MM Nm3/YEAR OXYGEN GAS (99%) MM Nm3/YEAR OXYGEN GAS (99%)

23.30% WT. % OXYGEN IN AIR 98.00% PERCENT OXYGEN RECOVERED 21.00% MOLE % OXYGEN IN AIR

99.00% VOLUME PERCENT OXYGEN IN GAS

60.0 ELECTRICAL REQUIREMENT - kWhr/1000 SFT3(Ref. 1) 18.64 ELECTRICAL REQUIREMENT - kWhr/1000 Nm3

2,118.64

REFERENCES:

1) Perry's Chemical Engineering Handbook, 7th Edition, 1997 2) COMPONENT BLOCK DIAGRAM: FIGURE A-2

(MM kWhr/Nm3)

PROCESS ELECTRIC POWER REQ'D

APPENDIX B-7 CARBON ELECTRODE

ANCES	
RY MASS BALANCE	0
OVERALL SUMMARY MA	SHOULD BEING AND MORE AS
AKING STUDY - OVER	
D.O.E. IRONMAKING S	רבי ליני הבי ליני
D.O.E	

LECTRODES	
CARBON GRAPHITE ELE	
CARBON	

08-June-2000 Rev. 2	CARBON GRAPHITE ELECTRODES	
BASIS:	1.000 MM MT/YR ELECTRODES DELIVERED	
SUMMARY: 1.1500 0.1500 1.0000	MM MT/YEAR PETROLEUM COKE FEED MM MT/YEAR PITCH BINDER FEED MM MT/YEAR ELECTRODE PRODUCT	
ASSUMPTIONS: (Ref. 1) 5.000 FUEL 500 TRAN 9,000.00 PREP 0.050 PREP	S: (Ref. 1) FUEL REQUIREMENT ELECTRODE TRANS (kg/mt) TRANSPORT DISTANCE, ONE WAY - (km) PREP PLANT ELECTRICAL POWER REQ'D (kWhr/mt ELECTRODES) PREP PLANT AUXILIARY N.G. FUEL - T/T ELECTRODES	1.150 AMOUNT OF PET, COKE FEED - (T/T OF ELECTRODE) 0.150 PITCH BINDER (C5H8) - (T/T ELECTRODE) REFERENCES: 1) The Making, Shaping and Treating of Steet, 10th Editi 2) COMPONENT BLOCK DIAGRAM: - FIGURE A-2

DOEELCTR 08-June-2000

D.O.E. IRONMAKING STUDY - OVERALL SUMMARY MASS BALANCES CARBON GRAPHITE ELECTRODES

STREAM	STREAM LABLE	DRY SOLIDS	LIQUID	TOTAL	%Fe	Fe UNITS	%c (DRY)	C UNITS	CO2
NOMORN		(), ()	()	<u></u>	(1)	,			
	PETROLEUM COKE FEED	1,150	0.000	1.150		·	94.00%	1.081	
	PITCH FEED	0.150	0.000	0.150			88.20%	0.132	
	TOTAL FEED TO ELECTRODES	1.300	0.000	1.300			93.33%	1.213	
	ELECTRODES PRODUCED	1,000	0.000	1.000			%00.96	096.0	
	WASTE GASES PROCESS		0					0.2533	0.9287
	SUPPLEMENTAL FUEL		(AS GAS) 0.05				72.00%	0.0360	0.1320
	TOTAL FLUE GASES	Control of the Contro						0.2893	1.0607
	ELECTRICAL POWER REQ'D	9,000.00							
	TRANS. OF ELECTRODES		0.0050				85.00%	0.00425	
	EXHAUST GASE\$							-	0.0156
	TOTAL ELEC. POWER FOR ELECTRODES:	(MM kWhr/yr) 9000.0000							
	TOTAL CO2 FOR 1.000 MM mt/YR							0.2935	1.0763

APPENDIX B-8

CO-PRODUCT COKE

D.O.E. IRONMAKING STUDY - OVERALL SUMMARY MASS BALANCES COPRODUCT COKE PRODUCTION

08-June-2000 Rev. 2

DOECPCOK

			10.00% PERCENT OF COKE PRODUCED REJECTED AS FINE BREEZE (2)	REFERENCES: 1) The Making, Shaping and Treating of Steel, 10th Edition, 1985 2) COMPONENT BLOCK DIAGRAM: - FIGURE A-5	
BASIS: 1.000 MM MT/YR COPRODUCT COKE DELIVERED (TARGET) 1.000 MM MT/YR COPRODUCT COKE DELIVERED (CALCULATED)	SUMMARY:	1.5873 MM MT/YEAR BITUMINOUS COAL FEED 1.1111 MM MT/YEAR TOTAL COKE PRODUCT 0.111 MM MT/YEAR FINE COKE BREEZE 1.000 MM MT/YEAR SIZED COKE PRODUCT TO USE	ASSUMPTIONS: (Ref. 1)	5.000 FUEL REQUIREMENT COKE TRANS (kg/mt) 500 TRANSPORT DISTANCE, ONE WAY - (km) 24.50 COKE PLANT ELECTRICAL POWER REQ'D (kWhr/mt COKE)	

DOECPCOK 08-June-2000

D.O.E. IRONMAKING STUDY - OVERALL SUMMARY MASS BALANCES COPRODUCT COKE PRODUCTION

	YOU IOO	יים ויספסטו יסטיריו ויספסטווסיו	00000						
STREAM	STREAM LABLE	DRY SOLIDS	LIQUID (MM T/YR)	TOTAL (MM T/YR)	%Fe	Fe UNITS	08Y	C UNITS	CO2
NOMBER		() () ()	()	(1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	/ :	()	, , , , ,	(5.5.5	,
	COAL FEED	1.587	0.000	1.587			80.00%	1.270	
	CUMULATIVE CO2 + ELEC. IN COAL	(IVIIVI KVVNITYT) 3.3935						0.0533	0.0846
	COKE PRODUCT GROSS	1. 1. 5.	0.000	1.11			94.00%	1.044	
	COKE BREEZE (FINES)	0.113	0.000	0.111			94.00%	0.104	
	COKE PRODUCED (NET TO SHIPMENT)	1.000	0.000	1.000			94.00%	0.940	
	WASTE GASES PROCESS (FROM CARBON)	- Ĉ				- M		0.209	0.7659
	COKE OVEN GAS							0.035	0.1297
	TOTAL FLUE GASES	CRABA DAMPACATA						0.244	0.8956
	ELECTRICAL POWER REQ'D	(Wild KWIII/94) 27.22							
	TRANS. OF COKE		0.0056				85.00%	0.00472	
	EXHAUST GASES								0.0173
	TOTAL ELEC. POWER FOR COKE:	(MM kWhr/yr) 30.6157							
	TOTAL CO2 FOR 1.000 MM mt/YR							0.2720	0.9975

APPENDIX B-9

NON-RECOVERY COKE PROCESS WITH CO-GENERATION

MASS BALANCES ION OF ELECTRICAL POWER	ASSUMPTIONS: 1.00% PERCENT VOLATILES IN COKE (C5H8) 94.53% PERCENT CARBON IN COKE 37.00% PERCENT CARBON IN PITCH 63.00% PERCENT CARBON IN PITCH 88.24% PERCENT VOLATILES OTHER IN PITCH 89.30% PERCENT VOLATILES OTHER IN PITCH 89.30% PERCENT FIXED CARBON IN CHAR 3.59% PERCENT FIXED CARBON IN CHAR 3.59% PERCENT FIXED CARBON IN CLEANED COAL FINES 17.85% PERCENT VOLATILES IN CLEANED COAL FINES 9.70% PERCENT ASH IN COAL FINES (IN POND) 16.72% PERCENT FIXED CARBON IN COAL FINES (IN POND) 11.11% PERCENT FIXED CARBON IN COAL FINES (IN POND) 11.11% PERCENT FIXED CARBON IN COAL FINES (IN POND) 11.18% PERCENT FIXED CARBON IN COKE FEED 17.80% PERCENT CHAR IN COKE FEED 17.80% PERCENT CHAR IN COKE FEED 17.80% PERCENT OF COKE PRODUCED REJECTED AS FINE BREEZE (2) 9.00% PERCENT OF COKE PRODUCED REJECTED AS FINE	REFERENCES: 1) LGE Confidential Client, Non-Recovery Coke Process Heat and Material Balances, 1998 2) COMPONENT BLOCK DIAGRAM: - FIGURE A-7
D.O.E. IRONMAKING STUDY - OVERALL SUMMARY MASS BALANCES NON-RECOVERY COKE PRODUCTION WITH CO-GENERATION OF ELECTRICAL POWER	MM MT/YR NON-RECOVERY COKE DELIVERED (TARGET) MM MT/YR NON-RECOVERY COKE DELIVERED (CALCULATED) MM MT/YEAR COAL SLURRY RECLAIMED FROM WASTE POND MM MT/YEAR COAL CLEANING/CONCENTRATION CLEANED COAL TO DRYER MM MT/YEAR BITUMINOUS COAL FEED TO CHARRING (DRY BASIS) MM MT/YEAR BITUMINOUS COAL FEED TO CHARRING (DRY BASIS) MM MT/YEAR SIZED COKE PRODUCT MM MT/YEAR SIZED COKE PRODUCT MM MT/YEAR SIZED COKE PRODUCT TO USE	FUEL REQUIREMENT COKE TRANS (kg/mt) TRANSPORT DISTANCE, ONE WAY - (km) COKE PLANT ELECTRICAL POWER REQ'D (kWhr/mt COKE) PERCENT REJECT IN RECLAIM OF COAL FINES PERCENT COAL RECOVERY IN CLEANING PLANT PERCENT MOISTURE IN FEED TO DRYER PERCENT MOISTURE IN FEED TO CHAR REACTORS PERCENT YIELD OF GOAL INTO CHAR PERCENT YIELD OF GREEN COKE FEED INTO COKE (DRY BASIS) NET PERCENT YIELD OF GREEN COKE FEED INTO COKE (DRY BASIS) ELECTRIC POWER CONSUMMED IN RECLAIM (kWhr/MT FEED) ELECTRIC POWER CONSUMMED IN CHARRING (kWhr/MT CHAR) ELECTRIC POWER CONSUMMED IN BRIQUET. (kWhr/MT CHAR) CO-GENERATION EFFICIENCY (CHAR GAS) (KWhr/MT CHAR) ELECTRIC POWER GENERATED COKE OFF-GAS HEAT CONTENT (MM BTU/MT COKE) COKE OFF-GAS HEAT CONTENT (MM BTU/MT COKE) CO-GENERATION EFFICIENCY (COKE GAS)
DOENRCOK 08-June-2000 Rev. 2	BASIS: 1.000 MM MT 1.000 MM MT 1.000 MM MT 4.2045 MM M 0.0334 MM M 4.1711 NET F 1.2551 CLEA 0.9413 MM MT 0.8256 MM MT 1.1541 MM MT 1.1541 MM MT 1.10000 MM MT 1.0000 MM MT 1.0000 MM MT	5.000 500 14.00 0.80% 76.14% 25.00% 6.00% 87.71% 86.80% 96.02% 5.50 7.50 11.00 12.00 3.2306 45.00% 45.00%

DOENRCOK 08-June-2000

D.O.E. IRONMAKING STUDY - OVERALL SUMMARY MASS BALANCES NON-RECOVERY COKE PRODUCTION WITH CO-GENERATION OF ELECTRICAL POWER

	NON-RECOVERY CORE PRODUCTION WITH CO-GENERALION OF ELECTRICATE TOWN	OS HIIM NO	GENERALIK	JN OF ELEC	INIONE I	100 trice	3/6	CHAITE	600
STREAM	STREAM LABLE	DRY SOLIDS (MM T/YR)	(MM T/YR)	(MM T/YR)	VOLATILES % (DRY)	(MM T/YR)	(DRY)	(MM T/YR)	(MM T/YR)
	CHAR PRODUCT FINE COAL SLURRY RECLAIMED	1.261	2.943	4.204	16.72%	0.211	73.58%	0.928	
	COARSE REJECTS TO POND	0.025	0.008	0.033	7.93%	0.002	22.07%	0.006	
	ELECTRIC POWER IN COAL RECLAIM	(MINI KAVIII/91) 6.937							
	FINE COAL TO CLEANING	1.236	2.935	4.171	16.90%	0.209	74.62%	0.923	
	COAL REJECTS FROM CLEANING	0.295	2.621	2.916	13.86%	0.041	62.06%	0.183	
	ELECTRICAL POWER IN CLEANING	(IMINI KWIII) 1) 9.272							·
	CLEANED COAL TO DRYER	0.941	0.314	1.255	17.85%	0.168	78.56%	0.740	
	DRIED COAL TO CHARRING FURNACE	0.941	090'0	1.001	17.85%	0.168	78.56%	0.740	
	CHAR PRODUCT TO BRIQUETTING	0.826	0.000	0.826	6.30%	0.052	89.30%	0.737	
	CHAR SYSTEMS TOTAL OFF-GASES	(MM k\Mbr/yr)						0.105	0.383
	ELECTRICAL POWER IN CHARRING	10.355 (MM kW/br/vr)							
	TOTAL ELEC. THROUGH CHARRING	26.564							
	CO-GENERATED ELECTRIC POWER	351.444							
	NET ELECTRICAL POWER GENERATED	324.880							

DOENRCOK	D.O.E. IRONMAKING STUDY - OV	OVERALL S	UMMARY M	FERALL SUMMARY MASS BALANCES WITH CO-GENERATION OF ELECTRICAL POWER	ICES TRICAL PO	NER			
08-June-2000 STREAM	NON-KECOVERT CONE TROBOGIEON STREAM LABLE	DRY SOLIDS	LIQUID (MM T/YR)	TOTAL (MM T/YR)	VOLATILES % (DRY)	VOLATILES (MM T/YR)	%C (DRY)	C UNITS (MM T/YR)	CO2 (MM T/YR)
NUMBER	BRIQUTTING OPERATION CHAR FEED TO BRIQUETTING	0.826	0.000	0.826	6.30%	0.052	89.30%	0.737	
	COAL FFFD TO BRIQUETTING	0.247	0.000	0.247	17.85%	0.044	78.56%	0.194	
	DECYCLE BREFZE FEED TO BRIQUET.	0.154	0.000	0.154	1.00%	0.002	94.53%	0.146	
	PITCH FFED TO BRIQUETTING	0.160	0.000	0.160	63.00%	0.101	37.00%	0.059	<u> </u>
	TOTAL FEED TO BRIQUETTING	1.387	0.000	1.387	14.32%	0.199	81.93%	1.136	, - ₋ -
	ELECTRIC POWER IN BRIQUETTING	(MM kWhr/yr) 16.641							
	COKE PRODUCT GROSS	1.154	0.000	1.154	1.00%	0.012	94.53%	1.091	
	COKE BREEZE (FINES)	0.154	0.000	0.154	1.00%	0.002	94.53%	0.000	
	COKE PRODUCED (NET TO SHIPMENT)	1.000	0.000	1.000	1.00%	0.010	94.53%	1.091	
								0.210	0.7707
	WASTE GASES, COKING (FROM CARBON)	(MM kWhr/yr)							
	COKING ELECTRICAL POWER REQ'D	16.152 (MM kWhr/vr)							
····	COKE ELECT. POWER CO-GENERATED	515.493 (MM kWhr/vr)							
	TOTAL ELECT. POWER REQUIRED COKE	32.793							
	NET ELECT. POWER PRODUCED COKE	482.700							
	TRANS, OF COKE		0.0058				85.00%	0.00490	
	EXHAUST GASES DURING TRANSPORT								0.0180
	CUM ELEC. POWER FOR N.R. COKE:	(MM kWhr/yr) 59.358 (MM kWhr/yr)							
	CUM NET ELEC. POWER CO-GENERATED	866.937							
	TOTAL CO2 FOR 1.000 MM mt/YR FOR NON-RECOVERY PROCESS COKE							0.3197	1.1721
									1

D.O.E. IRONIMAKING - NON-RECOVERY COKE, Rev. 2

APPENDIX B-10 RAW MATERIAL ASSUMPTIONS

COMPONENT ASSUMPTIONS FOR BALANCES

Page 1					10111110110	DTC 16b	CITM DOWER	* \\
COMPONENT (BASIS: 1.0 MM mt/yr)	%Fe	၁%	%C02	CUM. COZ (MT/mt)	%01HEK		COMSUMP.	CUM. CO2
							(KWVIII)	(1811/1117)
AS-MINED-ROCK	30.00%				70.00%	- 		
RUN-OF-MINE ORE TO CONC.	20.00%			0.0409	20.00%		12.66	0.0115
LUMP IRON ORE	65.00%			0.1437	35.00%		32.24	0.0294
WASTE ROCK	16.93%				83.07%			
IRON ORE CONCENTRATE (TO PL)	68.56%			0.0695	31.44%		69.23	0.0631
IRON ORE CONC. (AFTER PL)	68.56%			0.0695	31.44%		152.57	0.1392
IRON ORE PELLETS (AT PP)	67.81%			0.1779	32.19%		225.00	0.2052
DIESEL FUEL		85.00%	· ··- <u>-</u>		15.00%	19,000	ï	
NATURAL GAS FUEL		72.00%	<u>-</u>		28.00%	18,955		
FUEL OIL		86.00%			14.00%	18,900	(KWhr/Nm3)	(T/Nm3)
OXYGEN GAS (99%)					100.00%		2.12	0.0019
COAL (COKING)		80.00%		0.0533	20.00%	14,550	2.14	0.0020
CO-PRODUCT COKE (FROM COAL)		94.00%		0.9975	6.00%	15,970	30.62	0.0279
COAL FINES (RECLAIMED/CLEANED)		78.56%			21.44%	14,288	17.23	0.0157
NON-RECOVERY COKE (COAL FINES)		94.53%		1.1721	5.47%	16,060	59.36 (866.94)	0.0541
CHINA COKE (FROM COAL)		85.70%	.0	1.0000	14.30%	14,560		
PETROLEUM COKE (BY-PRODUCT)		94.00%		0.0156	6.00%	15,970	16.94	0.0156
CHARCOAL REDUCTANT		80:00%	-\o	1.0000	20.00%			0.0133
CARBON-GRAPHITE ELECTRODES		%00'96		1.0763	4.00%	16,500	9,000.00	8.2090

COMPONENT ASSUMPTIONS FOR BALANCES

Page 2			200,8	COUNTY COS	W.OTHER	RTI I/Ih	CHM POWER	EQUIV.*
COMPONENT (BASIS: 1.0 MM mt/yr)	е 3%	ပ %	200% 500%	(T/t)	% 0,000 1,00	5	COMSUMP.	CUM. CO2 (T/t)
				0.0364	88 40%		20.19	0.0184
BINDER (BENTONITE)	%09.T.							
LIME/DOLOMITE FOR PELLET	1.61%			1.4002	%68.36%		91.69	0.0836
RECYCLE EAF DUST	47.50%				52.50%			
RECYCLE DRI DUST	87.47%			•	12.53%			
BURNT LIME CaO (METALLURGICAL)	1.61%			1.4002	98.39%		91.69	0.0836
SiO2					100.00%			
IRON ORE PELLETS (GREEN)	68.76%				31.24%			
INDURATED IRON ORE PELLETS	67.81%			0.2051	32.19%		197.37	0.2384
DRI (HIGH C)	90.48%	2.50%			7.02%		496.94	0.3002
DRI (LOW C)	92.80%	1.00%		0.8797	6.20%		499.69	0.3018
LIQUID STEEL (100% DRI CHG)	99.70%	0.10%		0.9731	0.20%		1,326.90	83.8919
LIQUID STEEL (30% DRI CHG)	%02'66	0.10%		0.9731	0.20%		1,030.37 (MM kwhr/mt)	65.3303
CO-GEN. E.P. FROM N.R. COKE	% DISTR						866.937 (1 MM kwhr/yr)	
ELECTRICAL POWER (COAL)	57.00%			0.001448			1.00 (1 MM kwhr/yr)	
ELECTRICAL POWER (N.G.)	10.00%			0.000604			1.00 (1 MM kwhr/yr)	
ELECTRIC POWER (FUEL OIL)	3.00%			0.000871	<u>-</u>		1.00 (1 MM kwhr/vr)	
ELECTRIC POWER (OTHER)	30.00%			0.000000			1.00 (1 MM kwhr/yr)	
ELECTRICAL POWER (NET)				0.000912			1.00	
D.O.E. Ironmaking Study, Revision 2 (June 2000)	(000							